9,947 research outputs found

    Electron correlations in a C20_{20} fullerene cluster: A lattice density-functional study of the Hubbard model

    Full text link
    The ground-state properties of C20_{20} fullerene clusters are determined in the framework of the Hubbard model by using lattice density-functional theory (LDFT) and scaling approximations to the interaction-energy functional. Results are given for the ground-state energy, kinetic and Coulomb energies, local magnetic moments, and charge-excitation gap, as a function of the Coulomb repulsion U/tU/t and for electron or hole doping δ\delta close half-band filling (δ1|\delta| \le 1). The role of electron correlations is analyzed by comparing the LDFT results with fully unrestricted Hartree-Fock (UHF) calculations which take into account possible noncollinear arrangements of the local spin-polarizations. The consequences of the spin-density-wave symmetry breaking, often found in UHF, and the implications of this study for more complex fullerene structures are discussed.Comment: 18 pages, 7 figures, Submitted to PR

    A note on the 2D generalized Zakharov-Kuznetsov equation: local, global, and scattering results

    Get PDF
    We consider the generalized two-dimensional Zakharov-Kuznetsov equation ut+xΔu+x(uk+1)=0u_t+\partial_x \Delta u+\partial_x(u^{k+1})=0, where k3k\geq3 is an integer number. For k8k\geq8 we prove local well-posedness in the L2L^2-based Sobolev spaces Hs(R2)H^s(\mathbb{R}^2), where ss is greater than the critical scaling index sk=12/ks_k=1-2/k. For k3k\geq 3 we also establish a sharp criteria to obtain global H1(R2)H^1(\R^2) solutions. A nonlinear scattering result in H1(R2)H^1(\R^2) is also established assuming the initial data is small and belongs to a suitable Lebesgue space

    Adsorption of Self-Assembled Rigid Rods on Two-Dimensional Lattices

    Get PDF
    Monte Carlo (MC) simulations have been carried out to study the adsorption on square and triangular lattices of particles with two bonding sites that, by decreasing temperature or increasing density, polymerize reversibly into chains with a discrete number of allowed directions and, at the same time, undergo a continuous isotropic-nematic (IN) transition. The process has been monitored by following the behavior of the adsorption isotherms for different values of lateral interaction energy/temperature. The numerical data were compared with mean-field analytical predictions and exact functions for noninteracting and 1D systems. The obtained results revealed the existence of three adsorption regimes in temperature. (1) At high temperatures, above the critical one characterizing the IN transition at full coverage Tc(\theta=1), the particles are distributed at random on the surface and the adlayer behaves as a noninteracting 2D system. (2) At very low temperatures, the asymmetric monomers adsorb forming chains over almost the entire range of coverage, and the adsorption process behaves as a 1D problem. (3) In the intermediate regime, the system exhibits a mixed regime and the filling of the lattice proceeds according to two different processes. In the first stage, the monomers adsorb isotropically on the lattice until the IN transition occurs in the system and, from this point, particles adsorb forming chains so that the adlayer behaves as a 1D fluid. The two adsorption processes are present in the adsorption isotherms, and a marked singularity can be observed that separates both regimes. Thus, the adsorption isotherms appear as sensitive quantities with respect to the IN phase transition, allowing us (i) to reproduce the phase diagram of the system for square lattices and (ii) to obtain an accurate determination of the phase diagram for triangular lattices.Comment: Langmuir, 201

    Breaking a secure communication scheme based on the phase synchronization of chaotic systems

    Get PDF
    A security analysis of a recently proposed secure communication scheme based on the phase synchronization of chaotic systems is presented. It is shown that the system parameters directly determine the ciphertext waveform, hence it can be readily broken by parameter estimation of the ciphertext signal.Comment: 4 pages, 6 figure
    corecore